

Diploma Programme Programme du diplôme Programa del Diploma

Markscheme

November 2024

Chemistry

Higher level

Paper 3

34 pages

© International Baccalaureate Organization 2024

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2024

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2024

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Subject details: Chemistry higher level paper 3 Markscheme

Candidates are required to answer **ALL** questions in Section A **[15 marks]** and all questions from **ONE** option in Section B **[30 marks]**. Maximum total = **[45 marks]**.

- **1.** Each row in the "Question" column relates to the smallest subpart of the question.
- 2. The maximum mark for each question subpart is indicated in the "Total" column.
- **3.** Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
- 4. A question subpart may have more marking points than the total allows. This will be indicated by "**max**" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- 5. An alternative word is indicated in the "Answers" column by a slash (*I*). Either word can be accepted.
- 6. An alternative answer is indicated in the "Answers" column by "*OR*". Either answer can be accepted.
- 7. An alternative markscheme is indicated in the "Answers" column under heading **ALTERNATIVE 1** etc. Either alternative can be accepted.
- 8. Words inside chevrons « » in the "Answers" column are not necessary to gain the mark.
- 9. Words that are <u>underlined</u> are essential for the mark.
- **10.** The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
- 11. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by *OWTTE* (or words to that effect) in the "Notes" column.
- 12. Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
- 13. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then **follow through** marks should be awarded. When marking, indicate this by adding **ECF** (error carried forward) on the script.
- 14. Do not penalize candidates for errors in units or significant figures, unless it is specifically referred to in the "Notes" column.
- **15.** If a question specifically asks for the name of a substance, do not award a mark for a correct formula unless directed otherwise in the "Notes" column. Similarly, if the formula is specifically asked for, do not award a mark for a correct name unless directed otherwise in the "Notes" column.
- **16.** If a question asks for an equation for a reaction, a balanced symbol equation is usually expected, do not award a mark for a word equation or an unbalanced equation unless directed otherwise in the "Notes" column.
- 17. Ignore missing or incorrect state symbols in an equation unless directed otherwise in the "Notes" column.

Section A

Question		on	Answers	Notes	Total
1.	а	i	gradient = $\frac{0.010}{5} = 0.0020 \checkmark$ [mercury ion] = 0.0020 x <i>t</i> /months«µg Hg g ⁻¹ month ⁻¹ » \checkmark	Accept gradient in the range "0.0019- 0.0021" OR "1/500" for M1. Accept "y = 0.0020 x" for M2.	2
1.	a	ii	Any one of: rate of uptake equals rate of metabolism/excretion ✓ all «binding» sites/fish «muscles» occupied/saturated ✓	Accept "equilibrium «between [CH ₃ Hg ⁺] in water and [CH ₃ Hg ⁺] in muscle»". Accept "fish have matured/stopped growing so maximum concentration reached" OR "fish reached maximum capacity to absorb".	1 max
1.	а		«methylmercury is fat soluble/lipophilic» easier to pass through «cell» membranes <i>OR</i> «methylmercury more» readily found in nature/ecosystem «than mercury» <i>OR</i> «methylmercury more» soluble in water/muscle tissue «than mercury» ✓	Do not accept "ionic" OR "polar" alone. Do not penalize references to solid Hg. Accept "forms ion-dipole with water" but not "forms hydrogen bond with water."	1
1.	b	i	«3.723 x 0.0052 =» 0.019 «μg» ✓	Ignore uncertainty values.	1
1.	b	ii	«0.0001/0.0052 x 100%=» 2 «%» ✓		1

(Question 1 continued)

Question		Answers	Notes	Total
1.	C	Any two of: mass/length/size/age of fish/time in lake ✓ species/type of fish ✓ water-content of muscle tissue ✓ depth/area «in lake» where captured ✓ part/tissue of fish «sample taken from»✓ how tissue/CH ₃ Hg ⁺ is extracted✓ «water» temperature «when captured»✓	Apply list principle (LP). Do not accept "mass of muscle sample" OR "same fish" alone OR "pH".	2 max

Q	uestion	Answers	Notes	Total
2.	а	Before heating: displace oxygen/air OR avoid combustion/reaction/explosion of hydrogen ✓ Until product has cooled: prevent oxidation «of copper back to copper oxide» OR ensure reaction is complete ✓	Accept "prevent «further» reaction of copper oxide with carbon dioxide/CO ₂ OR moisture «in air»" OR "without continuous flow of H ₂ reduction may be incomplete" OR "ensure only H ₂ gas in reaction tube" for M1.	2

Question		on	Answers	Notes	Total
2.	b	i	mass of «reduction tube and» copper oxide/sample before «heating»√ mass of «reduction tube and» sample/copper/Cu after «reduction/heating» √	Apply LP. Do not accept mass of water as not a practical method. Accept weight for mass. Accept "mass before heating" for M1 Accept "mass after heating" for M2	2
2.	b	ii	subtract mass of sample/copper/Cu «following reduction» from mass of copper oxide ✓	Accept "difference between masses before and after reduction." Mark can be scored based on part bi of this question.	1

(Question 2 continued)

Question		Answers	Notes	Total
2.	C	incomplete reduction/reaction/not all oxygen removed <i>OR</i> copper re-oxidized <i>OR</i> oxide was partly reduced before analysis <i>OR</i> impurities in sample ✓	Accept "sample wasn't heated/cooled long enough" for M1. Do not accept "not all oxygen burned" for M1.	
		repeat «heating in presence of H_2 » until mass of product is constant <i>OR</i> heat for a longer time <i>OR</i> use a higher temperature <i>OR</i> increase surface area «of copper oxide» \checkmark	Improvement in M2 must be related to error identified in M1. Accept "handle/weigh product/copper/Cu metal in oxygen-free atmosphere" for M2. Accept "reduce distance between tube and heat source" for M2.	2

Section B

Option A — Materials

Question		on	Answers	Notes	Total	
3.	а	i	Any two of: lowers the melting point «of alumina» ✓	Do not accept "lowers melting point of aluminium".		
			lowers energy/electricity «consumption» ✓	Do not accept "lowers boiling point".		
			lowers operating temperature ✓		2 max	
			improves conductivity ✓			
			acts as a solvent ✓			
3.	а	ii	Bonding: $\Delta \chi = 1.8$ AND average $\chi = 2.5$ \checkmark ionic AND polar covalent \checkmark Electrical conductivity: non/poor conductor/insulator \checkmark	Accept "50 to 60% ionic AND 40 to 50% polar covalent" OR any answer in the range given for M2.	3	

(Question 3 continued)

Q	Question		Answers	Notes	Total
3.	С		 «in Al alloy» different sizes of ions/particles OR Ni atoms disrupt regular structure ✓ prevent layers from slipping/sliding ✓ 	Accept diagram representing lattice with different sized atoms/circles for M1. Difficulty sliding should be explained for M2.	2
3.	d	i	electrophile AND Lewis acid ✓		1
3.	d	ii	Any one of: efficiency/only use small quantities \checkmark selectivity O R produce the desired product \checkmark ability to work in mild/severe conditions \checkmark low environmental impact O R low toxicity \checkmark long lifetime O R resistance to poisoning \checkmark cost effective/economical \checkmark easily separated/recovered \checkmark	Apply LP.	1 max

(Question 3 continued)

Question		on	Answers	Notes	Total
3.	е	i	<pre>1/2 «atom per face» x 6 «faces per cube» = 3 «atoms» AND 1 / 8 «atom per corner» x 8 «corners per cube» = 1 «atom» √ «atoms per unit cell = 3 + 1 =» 4 √</pre>	Award [1 max] for correct answer without working.	2
3.	e	ii	«4 atoms per unit cell» mass of 4 atoms «= 4 x 26.98 g mol ⁻¹ ÷ 6.02 x 10^{23} mol ⁻¹ =» 1.79 x 10^{-22} «g» ✓ volume of unit cell «= $(4.05 \times 10^{-8})^3$ =» 6.64 x 10^{-23} «cm ³ » ✓ density «=1.79 x 10^{-22} g ÷ 6.64 x 10^{-23} cm ³ =» 2.70 «g cm ⁻³ » ✓	Accept alternate methods of doing calculation. Award [3] for correct final answer.	3

Question		on	Answers	Notes	Total
4.	а		hydrocarbon/carbon-containing gas/compound 🗸	Accept "ethanol" OR specific gaseous hydrocarbons OR carbon monoxide/dioxide/CO/CO ₂	1
4.	b		Obtained using CVD: heat/vaporize compound/hydrocarbon/carbon-containing gas «mixed with inert gas» ✓		2
			Formed into CNT: hydrocarbon/carbon compound decomposes «to form carbon nanotubes» ✓		

(Question 4 continued)

G	uesti	on	Answers	Notes	Total
4.	С		both have covalent bonds «in molecule» ✓ CNT has «weaker» London/dispersion/instantaneous dipole-induced dipole forces «between fibres» <i>AND</i> Kevlar has «strong» hydrogen bonds «between strands of polymers» ✓	Accept polar «and nonpolar» covalent in Kevlar but «only» nonpolar covalent in CNT.	3
			CNT only C-C bonds AND Kevlar C-H/C-N/C-O/N-H/C=C/other covalent bonds ✓		

(Question 5 continued)

G	Question		Answers	Notes	Total
5.	b	i	BP2 AND «long» alkyl/C₅H ₁₁ «group/chain» prevents close packing OR BP2 AND «long» alkyl/C₅H ₁₁ «group/chain» cause molecules to align ✓	Accept "BP2 AND more polar". Do not accept any reference to rigid/rod-shaped. Accept "tail" for "long alkyl group."	1
5.	b	ii	neither «BP1 nor BP2» contain a dioxin ring <i>OR</i> «BP1 and BP2 have» no oxygen/O <i>OR</i> «BP1 and BP2 are» not heterocyclic compounds «in contrast to dioxins». √		1
5.	b	iii	BP1 AND Any one of: contains chlorine/Cl «and BP2 does not» ✓ can produce chlorinated dioxins on combustion «and BP2 will produce less toxic combustion products» ✓ more likely to produce persistent organic pollutants/POP ✓ act on cell receptors «and BP2 does not» ✓	Do not accept just polychlorinated biphenyl/PCB with no further explanation	1 max

Question		on	Answers	Notes	Total
6.	а		• $O_2^-(aq) + H_2O_2(aq) \rightarrow \bullet OH(aq) + OH^-(aq) + O_2(g) \checkmark$	Penalize missing OR misplaced radical (on H) once per paper.	1
6.	b		Step one: $Fe^{2+}(aq) + H_2O_2(aq) \rightarrow Fe^{3+}(aq) + \bullet OH(aq) + OH^{-}(aq) \checkmark$ Step two: $Fe^{3+}(aq) + \bullet O_2^{-}(aq) \rightarrow Fe^{2+}(aq) + O_2(g) \checkmark$	Award [1] for showing Fe ²⁺ being consumed and regenerated but wrong equation. Penalize missing OR misplaced radical (on H) once per paper.	2
6.	с		only Cu ²⁺ ions exhibit variable oxidation states <i>OR</i> Cd ²⁺ ions do not exhibit variable oxidation states <i>AND</i> Cu ²⁺ can be reduced to Cu ⁺ and oxidized back ✓		1
6.	d		chelation ✓	Apply LP. Accept "diet in essential minerals «to aid removal of Cd/cadmium from binding sites»". Do not accept precipitation or adsorption.	1

Option B — Biochemistry

Question		on	Answers	Notes	Total
7.	а		condensation 🗸	Accept "esterification". Accept "nucleophilic substitution/S _N ".	1
7.	b	i	ALTERNATIVE 1: 2 C=C bonds / 2 carbon to carbon double bonds \checkmark mass of iodine per mole of acid = «2 x 253.80 g mol ⁻¹ =» 507.6 «g mol ⁻¹ » \checkmark iodine number «= $\frac{507.6 g mol^{-1}}{280.50 g mol^{-1}}$ × 100 » = 181 \checkmark ALTERNATIVE 2: 2 C=C bonds / 2 carbon to carbon double bonds \checkmark « $\frac{100 g}{280.50 g mol^{-1}}$ × 2 » = 0.713 mol of l ₂ «reacts with 100 g» \checkmark lodine number «= 0.713 mol x 253.80 g mol ⁻¹ » = 181 \checkmark	Award [3] for correct final answer.	3
7.	b	ii	straighter chain/fewer kinks in chain/more regular structure ✓ chains pack more closely together ✓ stronger London/dispersion/instantaneous dipole-induced dipole forces «between molecules» ✓	Accept "greater surface area/electron density" OR "fewer carbon-carbon/C=C bonds" OR "less unsaturated" for M1 Accept "stronger van der Waals'/vdW forces" for M3. Do not accept arguments based on size/molar mass/molecular mass of	3

Q	Question		Answers	Notes	Total
7.	b	iii	trans-fats produced ✓ <i>Any one of:</i> «trans-fats» difficult to metabolize/excrete <i>OR</i> «trans-fats» accumulate in body ✓ increased levels of LDL «cholesterol» <i>OR</i> decreased levels of HDL «cholesterol» <i>OR</i> increased LDL to HDL ratio ✓	Do not award mark for "contains more LDL" OR "contains less HDL", they increase or decrease levels in the body.	2 max

Q	Question		Answers	Notes	Total
8.	а	i	proteins are charged at certain pH/pI ✓ attracted to electrode of opposite charge <i>OR</i> small/lighter/higher charged species travel further in gel ✓	Do not penalize reference to amino acids instead of proteins. Do not accept answers related to DNA.	2
8.	а	ii	electrostatic/ionic/ion-dipole attraction \checkmark hydrogen bonding \checkmark		2

(Ques	(Question 8 continued)					
C	Question		Answers	Notes	Total	
8.	b	i	CH ₂ OH OH H H H OH H OH O	Award mark if hydrogens are drawn as shown and rings are connected with a single oxygen. Accept a straight line across the middle with the oxygen atom, $\downarrow \downarrow $	1	
8.	b	ii	carbonyl ✓ hydroxyl ✓	Accept "aldehyde" for M1 Accept "alcohol" OR "hydroxy" but not "hydroxide" for M2.	2	
8.	b	111	H = 0 $H = 0$	Accept circle that includes H and OH on C5.	1	

C	uestion	Answers	Notes	Total
8.	C	Any two of: lactose/substrate binds to active site \checkmark weakens «glycosidic/ether» bond in substrate \checkmark lowers activation energy/ E_a OR provides alternate pathway \checkmark increases rate of reaction OR acts as catalyst \checkmark	Accept "favorable orientation/conformation of the substrate «enforced by enzyme»" for M1.	2 max
		lactose/substrate specific ✓		

Question		on	Answers	Notes	Total
9.	а		lipid soluble so dissolves in body tissues/not excreted \checkmark		2
			may be toxic/have adverse effects in high concentrations/excess \checkmark		Z
9.	b	i	highly conjugated system OR many alternating single and double bonds OR many delocalized electrons √ «strong» absorption of some/specific wavelengths/colours/visible light √		2

(Question 9 continued)

Question		on	Answers	Notes	Total
9.	b	II	carotene/compound is oxidized OR carotene/compound undergoes oxidative rancidity ✓ «visible light» provides energy making carotene unstable OR «visible light» produces radicals ✓	Accept "visible light causes carotenes change configuration/from cis to trans" for M1. Accept "visible light promotes electrons an excited state making molecule unstable" for M2.	2

Question		on	Answers	Notes	Total
10.	а	i	«[CPK] in diluted sample = 75 x 10^{-6} mol dm ⁻³ » «[CPK] in undiluted sample =» 75 x 10^{-5} / 7.5 x 10^{-4} mol dm ⁻³ \checkmark	Accept answers in the range 73-77 x 10^{-5} / 7.3-7.7 x 10^{-4} mol dm ⁻³ .	1
10.	а	ii	$[CPK] = 75 \times 10^{-6} \pmod{\text{dm}^{-3}} \text{ AND } A = 0.50$ OR $[CPK] = 75 \times 10^{-5} \pmod{\text{dm}^{-3}} \text{ AND } A = 5.0 \checkmark$ $\ll \mathcal{E} = \frac{A}{l \times c} = \frac{0.50}{0.100 \text{ dm} \times 7.5 \times 10^{-5} \text{ mol } \text{dm}^{-3}} = \$ 6.7 \times 10^4 \pmod{\text{2} \text{ mol}^{-1}} \$$ OR $\ll \mathcal{E} = \frac{A}{l \times c} = \frac{0.50}{1.00 \text{ cm} \times 7.5 \times 10^{-5} \text{ mol } \text{dm}^{-3}} = \$ 6.7 \times 10^3 \pmod{\text{cm}^{-1} \text{ mol}^{-1}} \$ \checkmark$	Award [2] for correct final answer. Accept "6666.6 «dm ³ cm ⁻¹ mol ⁻¹ »".	2

Question		on	Answers	Notes	Total
11.			«host selectively» bond/binds to caesium/Cs/Cs⁺/metal «ion» <i>OR</i> complementary chemical structure of host molecule and metal «ion» √	Do not accept "specifically bind" for M1 as this is rare for synthetic host molecule. Do not accept "trap" for M1. Accept "supramolecule removed" for	2
			«supramolecule/host and caesium» anchored/filtered/precipitated 🗸	M2. Do not accept "removed" by itself for M2.	

Option C — Energy

Question		on	Answers	Notes	Total
12.	a	i	${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + {}^{1}_{0}n\checkmark$	 Accept equations without atomic numbers but not incorrect atomic numbers. Accept "D for deuterium" and "T for tritium" including mass numbers. Do not accept N for n. Accept values on the right side of the symbols if consistent. 	1
12.	а	ii	helium/product has higher binding energy «per nucleon» than «the average of binding energies per nucleon for» reactants/deuterium and tritium ✓ mass deficit/defect converted to energy ✓	 Accept "binding energy of ⁴He is higher than the sum of binding energies of ²H and ³H" for M1. Accept "binding energy is released as heat" for M2. Do not accept just "mass converted to energy" alone. 	2
12.	b		$\Delta m = (mass of reactants-mass of products)$ $\Delta m = \text{ $`6.01512 + 1.00867 - 3.01605 - 4.00260 = ``0.00514 ``amu" $$\checkmark$}$ $\Delta m = \text{ $`0.00514 amu x 1.66 \times 10^{-27} kg amu^{-1} = ``8.53 x 10^{-30} ``kg" $$\checkmark$}$ $E = \text{``mc}^2 = 8.53 x 10^{-30} ``kg" x (3.00 x 10^8 m s^{-1})^2 = ``7.68 x 10^{-13} ``s] $$\checkmark$}$	Award [3] for correct final answer.	3

Question		on	Answers	Notes	Total
12.	с		electrons/atoms/ions/elements absorb «specific» photons/frequencies/wavelength/energies «and jump to higher levels» «continuous» spectrum is missing this frequency/wavelength <i>OR</i> «absorbed» frequency/wavelength of light is re-radiated in all directions	Accept correctly annotated diagram. Accept: "gasses in sun's atmosphere for element" in M1. Accept "black lines seen «in continuous spectrum» where photons absorbed" for M2.	2

Q	Question		Answers	Notes	Total
13.	а		UV has higher energy/shorter wavelength «for use on ISS» ✓ UV is absorbed «by O ₃ » in the atmosphere <i>OR</i> only a little/small percentage «of UV light» reaches the earth's surface ✓		2

(Question 13 continued)

Question		on	Answers	Notes	Total
13.	b		«1.3 watts m ⁻² X 3 =» 3.9 «watts» ✓ «3.9 watts x 20 % =» 0.78 «W» ✓	Accept range of "3.6-4.2 «watts»" for M1. Accept range of "0.72-0.84 «W»" for M2. Accept range of "0.24-0.28 «W»" for M2 if M1 is missing.	2
13.	С		change in polarity/dipole ✓ bonds stretch/bend <i>OR</i> bond length/O-H distance changes <i>OR</i> bond angle/H-O-H angle changes ✓ different vibrations/vibrational modes absorb different wavelengths ✓	Accept "bonds/molecules vibrate" for M2. Accept "molecules stretch" OR "molecules bend" for M2. Accept appropriate diagrams.	3

(Question 13 continued)

Question		on	Answers	Notes	Total
13.	d		highly conjugated system <i>OR</i> many alternating single and double bonds <i>OR</i> many delocalized electrons √		1
13.	e	i	Any two of: cheaper OR ease of fabrication ✓ use light of lower energy/lower frequency/longer wavelength ✓ absorb wider range of wavelengths ✓ dye converts most/all absorbed photons into electrons ✓ plentiful /renewable resources «to construct DSSC cells» ✓ operate at lower «internal» temperatures/better at radiating heat away «since constructed with thin front layer of conductive plastic compared to glass box in photovoltaic cell» ✓ use of nanoparticles provides large surface area exposure to sunlight/sun/light ✓ can absorb better under cloudy/low light conditions ✓ better conductivity ✓ more flexible ✓	Apply LP. Accept "more efficient".	2 max
13.	е	ii	transfer electrons to external circuit/from electrolyte to anode. \checkmark	Accept "provide large surface area". Accept "provides substrate to adsorb the dye molecules".	1

(Question 13 continued)

Question		on	Answers	Notes	Total
13.	е	iii	Anode: $3I^{(aq)} \longrightarrow I_{3}^{(aq)} + 2e^{-1}$	Award [1 max] for correct equations at wrong electrodes.	
			Cathode: $I_3^-(aq) + 2e^- \longrightarrow 3I^-(aq)_{\checkmark}$	Award [1 max] for using I ₂	2

Question		on	Answers	Notes	Total
14.	a	i	$C_8H_{18}(I)$ +12.5 $O_2(g)$ → 8 $CO_2(g)$ + 9 $H_2O(g)$ ✓	Accept equation with whole number coefficients.	
			«1 x 8(44.01) ÷ 114.26 =» 3.081 «kg CO₂ produced» ✓	Award [2] for correct final answer.	2
				Accept "3.09 «kg CO ₂ produced»" if whole numbers are used for molar mass.	
14.	а	ii	CO_2 «produced by burning ethanol» captured by crops «via photosynthesis» \checkmark	Do not accept just "renewable" OR "carbon neutral" alone"	1
14.	b		Any one of: «alkali» scrubbers ✓ react with CaO to produce carbonate ✓	Apply LP. Accept "use as a feedstock" OR "convert to syngas". Do not accept carbon fixation/capture.	1 max

Q	uestion	Answers	Notes	Total
15.	a	 «redox» reaction in rechargeable battery is reversible «but not in a primary cell» OR rechargeable battery needs to be charged before use OR OR rechargeable battery has greater rate of self-discharge √ 	Accept "rechargeable battery can be recharged AND primary cell cannot" OR "rechargeable battery can be used more than once/many times AND primary cell can be used once only".	1
15.	b		Award [2] for correct final answer. Award [1 max] for –0.17.	2
15.	C	Chemical natures: further apart in redox table/activity series «used as electrodes» produces higher voltage/electrical output ✓ <i>Quantities:</i> «larger» quantity of materials increase/impact total work/length of time battery can operate <i>OR</i> «higher» concentrations can influence voltage/electrical output <i>OR</i> «higher» concentrations influence/increase total energy/voltage/electrical output ✓	Do not accept "higher charge" alone for M1.	2

Option D — Medicinal chemistry

Question		on	Answers	Notes	Total
16.	а	i	$\ll \frac{0.897 \times 180.17}{138.13} \gg = 1.17 \ \text{``g} \ \checkmark$		1
16.	а	ii	water <i>AND</i> incomplete drying/water retained in solid <i>OR</i> ethanoic acid <i>AND</i> not evaporated ✓	Apply LP. Accept "ethanoic anhydride AND excess reagent". Accept "salicylic acid AND incomplete conversion/reaction".	1
16.	а	iii	Any three of: dissolve in hot solvent ✓ filter/centrifuge «undissolved impurities» ✓ cool to reform crystals ✓ filter/centrifuge «purified product from dissolved impurities» ✓ rinse with cold solvent ✓	 Steps given must relate to the process of recrystallization. Do not award "filter" or "centrifuge" twice unless separate functions specified. Accept 'drying of final product'. Do not accept steps in the process of converting aspirin to sodium salt/soluble aspirin. 	3 max

(Question 16 continued)

Question		on	Answers	Notes	Total
16.	а	iv	In both spectra: 1050-1410 «cm ⁻¹ due to C-O» OR 1700-1750 «cm ⁻¹ due to C=O» OR 2850-3090 «cm ⁻¹ due to C-H» ✓ In aspirin spectrum only: 2500-3000 «cm ⁻¹ due to O-H» OR 1620–1680 « cm ⁻¹ due to C=C » ✓	Apply LP.	2
16.	b		Aspirin: prevents/interferes with production of prostaglandins/substances responsible for pain/swelling/fever' ✓	Award [1 max] for "aspirin acts at the pain source AND morphine acts on the brain/CNS". Accept "blocks COX/cyclooxygenase" for M1.	
			Morphine: blocks impulses within the brain /CNS OR binds to the «opioid/pain» receptors in the brain/CNS OR effective against strong pain ✓	Accept "effective against pain due to cancer/surgery/serious injury" for M2. Accept "sedate patients/relieve anxiety/stress associated with severe/terminal illness" for M2. Do not accept "blocks impulses to the brain" for M2.	2

(Question 16 continued)

Q	Question		Answers	Notes	Total
16.	C		Any two of: different functional groups ✓ affect binding between drug and receptor «sites/molecules» OR cause different solubility in lipids/blood-brain barrier/BBB ✓ codeine/diamorphine must be hydrolysed «before it can bind to opioid receptors» ✓	Allow names or structures for M1.	2 max

Question		Answers	Notes	Total
17.	а	Laboratory synthesis: natural sources not depleted/not reliant on scarce resources OR new structures can be developed to target specific sites OR higher purity/concentration ✓ Derivation from natural sources: provide ready-made complex organic structures «that would be difficult to synthesize» OR active compounds may be beyond synthetic techniques OR can provide semi-synthetic approach ✓	Do not accept "produced faster OR lower cost".	2

(Question 17 continued)

Question		Answers	Notes	Total
17.	b	СССТОН	Apply LP. Award [1] for two chiral carbon atoms circled in the diagram. Award [0] if any achiral carbon atoms are circled. Accept circle including carbon and substituents but not additional carbons.	1
17.	C	«plane» polarized light passed through sample ✓ analyser/second polarizer determines angle of rotation of plane of plane-polarized light OR each enantiomer rotates plane «of plane-polarized light» in opposite directions «by the same angle» ✓		2

Question		Answers	Notes	Total
18.	а	 «irreversibly» binds/bonds to enzyme/transpeptidase OR inhibits enzyme/transpeptidase «in bacteria» that produces cell walls OR prevents cross-linking of bacterial cell walls √ 	Accept "reacts with" for "bonds to" for M1. Do not accept "cell membrane" for "cell wall" for M1.	2
		cells absorb water <i>AND</i> burst <i>OR</i> cells cannot reproduce √	Accept "cells burst due to osmotic pressure" for M2. Accept "bacteria" for "cells" for M2.	

(Question 18 continued)

Question		Answers	Notes	Total
18.	b	 Any two of: prevents virus attaching to/entering host cell ✓ alters cell's genetic material/DNA «so that virus cannot use it to multiply» ✓ blocks enzyme activity in the host cell «so that virus cannot use it to multiply» ✓ prevents removal of protein coat/capsid ✓ prevents injection of viral DNA/RNA «into host cell» ✓ prevents release of «replicated» viruses «from host cell» ✓ 	Apply LP. Accept "prevents synthesis of virus by host cell". Accept "alters RNA/DNA/genetic material of virus". Accept "blocks viral enzyme/reverse transcriptase"	2 max

Question		'n	Answers	Notes	Total
19.	а		$\begin{array}{l} Ca(OH)_2(aq) + 2HCl(aq) \rightarrow CaCl_2(aq) + 2H_2O(l) \\ \textbf{OR} \\ Ca(OH)_2(aq) + 2H^+(aq) \rightarrow Ca^{2+}(aq) + 2H_2O(l) \checkmark \end{array}$	Accept "OH (aq) + $H^{+}(aq) \rightarrow H_{2}O(l)$ ".	1
19.	b		pK _a = 10.32 ✓ pH «= pK _a + log $\left(\frac{[A^-]}{[HA]}\right)$ = 10.32 + log $\left(\frac{0.015}{0.020}\right)$ » = 10.20 ✓	Accept "10.31" for M1. Accept "10.19" for M2. Award [2] for correct final answer. Award [1 max] if the final answer is not to 2 decimal places.	2

(Question 19 continued)

Question		on	Answers	Notes	Total
19.	С		blocks/binds to H2/histamine receptors «in cells of stomach lining» OR prevents histamine molecules binding to H2/histamine receptors «and triggering acid secretion» \checkmark	Do not accept 'proton pump inhibitor'. Accept "H2-receptor antagonist/H2RA" OR "blocks/inhibits action of histamine" for M1.	2
			prevents «parietal» cells/stomach lining from releasing/producing acid \checkmark	Do not accept just "inhibits acid production" for M2.	

Question		on	Answers	Notes	Total
20.	a	i	${}^{131}_{53}I \to {}^{131}_{54}Xe + {}^{0}_{-1}\beta \checkmark$	Accept β , β^{-} , e or e ⁻ . Accept ${}^{131}I \rightarrow {}^{131}Xe + \beta$. Accept ${}^{131}I \rightarrow {}^{131}Xe + \beta + v$. Accept equations without atomic numbers but not with incorrect atomic numbers. Accept values on the right side if	1

(Question 20 continued)

Question		on	Answers	Notes	Total
20.	a	ii	Alternative 1:	Award [1] for the correct final answer.	1
20.	b		strongly ionizing radiation/interacts strongly with matter <i>OR</i> short path length/low penetrating power ✓	Apply LP. Accept "limited damage to tissues «surrounding tumours»".	1
20.	с		radioisotope delivered directly to «targeted» cancer cells ✓ by a carrier drug/protein/antibody/chelating agent ✓	Accept 'several sites in body can be targeted at the same time'.	2